二项式求项公式
(a+b)^n
=C(n|0)*a^n+C(n|1)*a^(n-1)*b+C(n|2)*a^(n-2)*b^2+....+C(n|r)*a^(n-r)*b^r+....+C(n|n-2)*a^2*b^(n-2)+C(n|n-1)*a*b^(n-1)+C(n|n)*b^n
其中:C(n|r)表示
n个元素中取r(r≤n,且r,n∈N+)个元素的组合数n个(a+b)相乘,是从(a+b)中取一个字母a或b的积。所以(a+b)^n的展开式中每一项都是)a^k*b^(n-k)的形式。对于每一个a^k*b^(n-k),是由k个(a+b)选了a,(a的系数为n个中取k个的组合数(就是那个C右上角一个数,右下角一个数))。(n-k)个(a+b)选了b得到的(b的系数同理)。由此得到二项式定理。
二项式所有公式
二项式展开式各项系数和公式:(a+b)^n=D。初等代数中,二项式是只有两项的多项式,即两个单项式的和。二项式是仅次于单项式的最简单多项式。
由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式(例:0可看做0乘a,1可以看做1乘指数为0的字母,b可以看做b乘1),分数和字母的积的形式也是单项式。
二项式定理方程式
二项式定理(英语:Binomialtheorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年期间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
其中,二项式系数指...
等号右边的多项式叫做二项展开式。
二项展开式的通项公式为:...
其i项系数可表示为:...,即n取i的组合数目。
因此系数亦可表示为帕斯卡三角形(Pascal#39sTriangle)
什么是二项式
二项式是只有两项的多项式,即两个单项式的和。是仅次于单项式的最简单多项式。
如果二项式的形式为
ax+b其中a与b是常数,x是变量,那么这个二项式是线性的。
复数形式复数是形式为
a+bi的二项式,其中i是-1的平方根。
二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学.求二项式展开式系数的问题。
二项式特殊公式
sinαsinβ=-[cos(α+β)-cos(α-β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
和差化积公式:
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2](X-Y)]
二项式分解公式是
完全平方式就是最简单的例子,有C20个a^2,C21个ab,C22个b^2。
同理(a+b)^n中,有Cn0个a^n,Cn1个a^(n-1)*b,Cn2个a^(n-2)*b^2.....